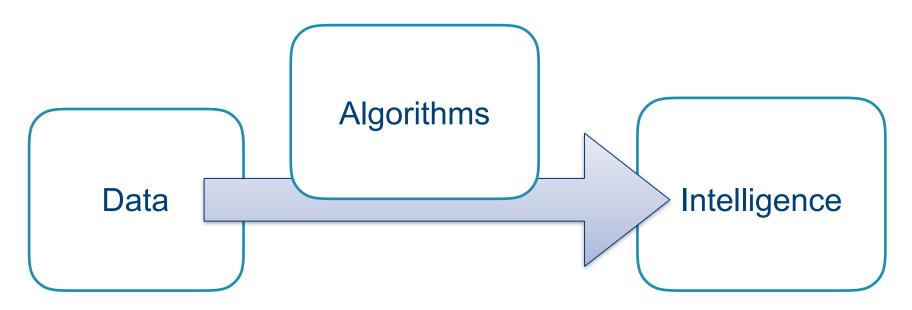
KU LEUVEN

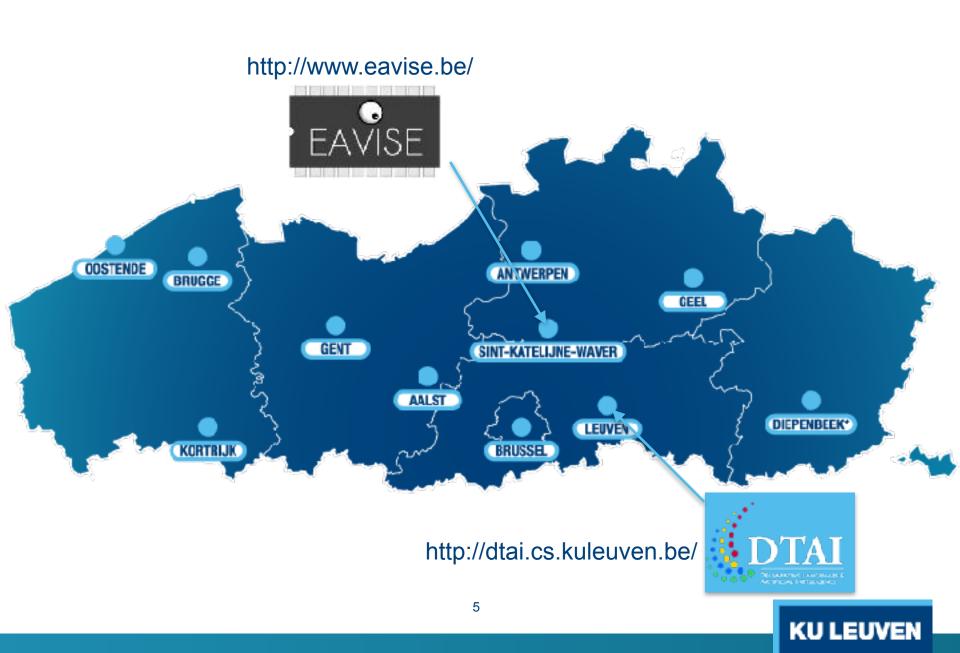
Connected Business Intelligence: TeTra Project "Intelligent Analysis of Time Series"


Prof. Joost Vennekens

joost.vennekens@kuleuven.be

What's it all about?

- TeTra = Technology Transfer from universities to industry
- Time series analysis


Project: parameters and goals

TenForce use cases

Project: parameters and goals

TenForce use cases

EAVISE: Mission

- Application-oriented research
- In collaboration with industry
- Apply state-of-the-art technology
 - Artificial Intelligence
 - Computer Vision
- To solve practical problems

People

- 3 professors
- 15 PhD-students / researchers
 - 10 computer vision
 - 5 artificial intelligence

Projects

- Bilateral projects
 - Contract research
 - VLAIO R&D projects
- TeTra-projects
- Internal KU Leuven projects
 - More fundamental research
 - Or more general applied research

Example project: TeTra project VIPER

- Security & safety applications
 - Reliable person detection on (IR) cameras
 - Al for detecting abnormal behaviour

• End of project event: 9/11/2017 @ Campus De Nayer

Who is the DTAI Research Group?

Currently

9 Faculty
1 Research Manager
1 Research Expert
±7 Post-docs
±45 Ph.D. students

Alumni

DTAI

Declaratieve Talen en Artificiële Intelligentie

~4 PhDs / year

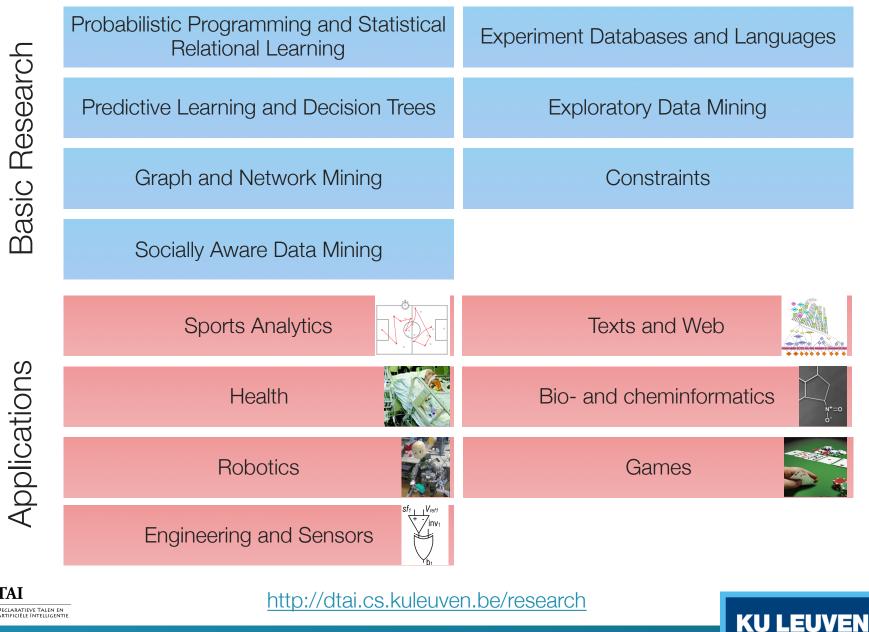
Mission Statement

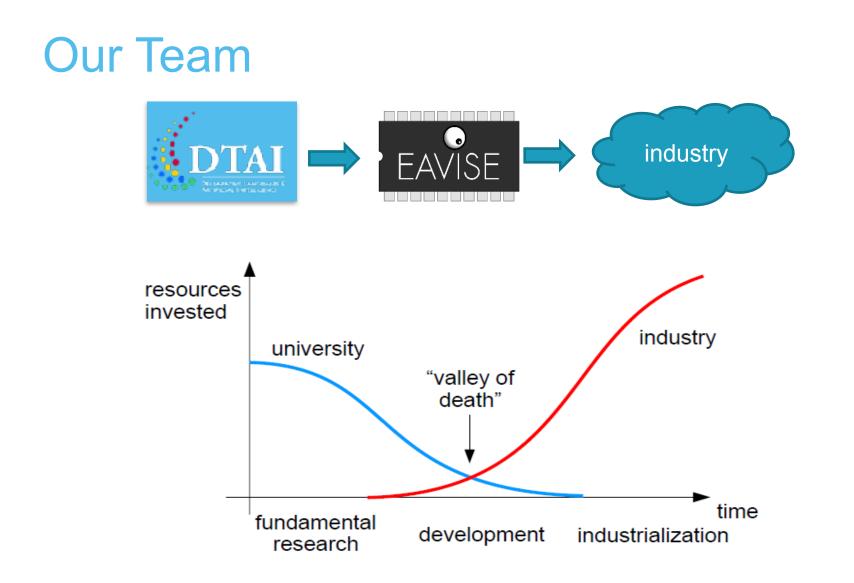
To design **languages** to express complex, relational and uncertain knowledge

To develop techniques, theory, systems and software solutions for **Artificial Intelligence**

probabilistic programming, machine learning, data mining, automating data science, automated reasoning

To apply these in various **application** domains

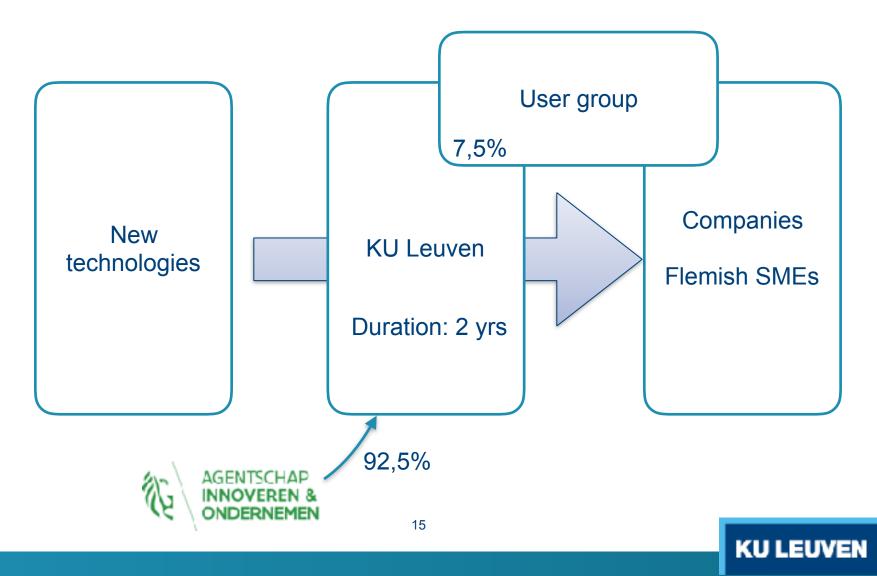



lesearch
asic
m

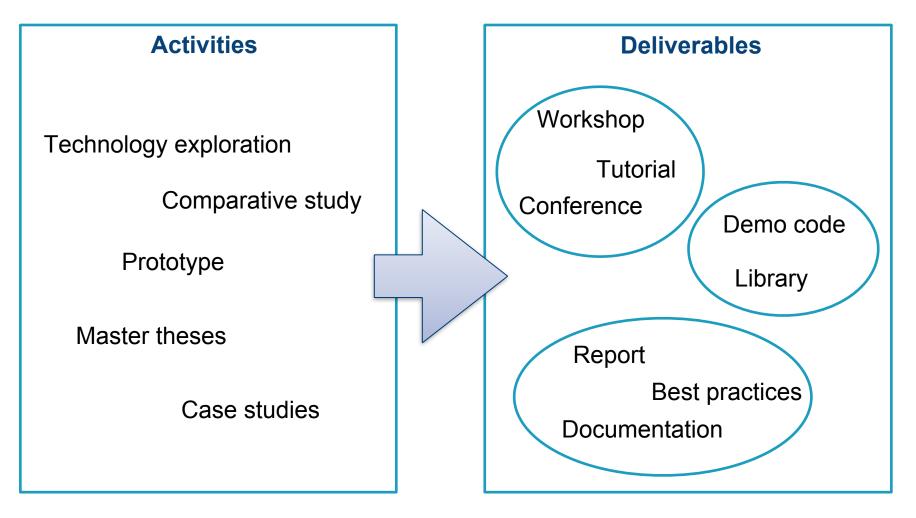
Applications

DTAI

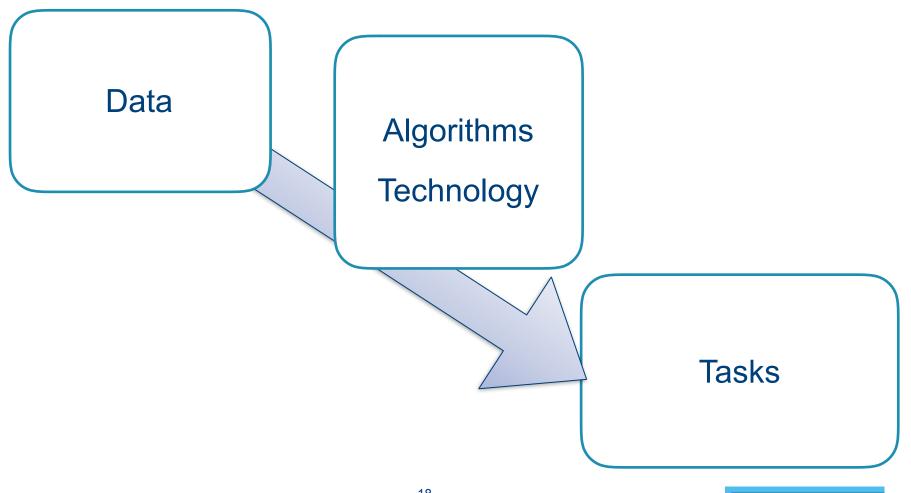
4



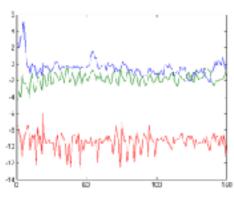
Project: parameters and goals


TenForce use cases

Technology Transfer (TeTra) project

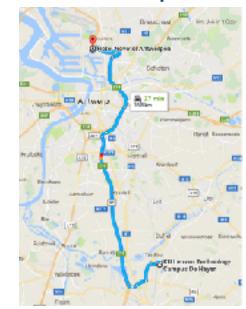


Technology Transfer (TeTra) project



Time Series Analysis

Time series data


Analogue sensor

Transaction/communication log

							 							1844444		154444		Bell 21 aug
(ms)	10	U time (ms)				elapse e (ms)								(Processing (time (ms)				
	110	359.219	19.61	10.146					17		178	1377.696,6	1 122 518	110072.456	1 17			2.185
		864.344					- 1		14			2640687,5		1.979.596				350
i i		393.172							÷.,			78.825,8		3.436.857				241
		545.201	1	1.1.1.5			_			981		1465128.5		534,231			_	112
		144.188	i a	12.126		i			3		170	1213017,1	6.632	134.734	i 3			215
		283		4.135						i 1	.778			282				
i i		655		572						581	.826			1.677	i i			757
		16									969			2.924				
											969	1 0,0		8.918				
		265		1.275						1 23	.953	285,1		191			• • •	
1		16								11	.935	31,3		1 21			• • •	96
1		30.813		17.231						855	.092	[562.341,1		26.416			• • •	1.121
		16									.839	1.0.0		1 11				
		303		31							.130			286				
											.744			1 37				
											.761							
											.761							
											.761				! !			2
											.761			1 2				
		16									.004			31				461
				2							.764							
											.761	1 22		1 14				
		69	1		1			1			1.064	1 0,0		1 14	1 9	1		

Geospatial

Algorithms

- Statistical (ARIMA)
- Hidden Markov Models, Dynamic Bayesian nets
- Deep learning
- Relational methods

Technology

• Open source:

scikitlearn, R, Elasticstack, Tensorflow, ...

- Amazon Web Services
- Microsoft Azure
- SAP HANA

Tasks

• Forecasting

Anomaly detection / prediction

• Pattern recognition

Pattern discovery

Project: parameters and goals

TenForce use cases

Industrial safety

- E.g., in chemical industry
- Continuously monitor processes
- Detect / prevent problems before critical thresholds are reached
- \rightarrow Anomaly prediction

(Sub-)Contractor management

- Historical data of performance of subcontractors
- Predict performance of contractor for new job
- Goal
 - Help select the best contractor
 - Monitor & potential problems *before* they occur
- → Forecasting & anomaly prediction

Project: parameters and goals

TenForce use cases

Conclusions

- Opportunity for KU Leuven Apply state-of-the-art methods to real-life case studies
- Opportunity for TenForce Extend products with innovative features
- Opportunity for you?
 - Stay informed of state-of-the-art
 - Broad dissemination events

joost.vennekens@kuleuven.be http://www.eavise.be